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The rational interpolation problem in the scalar case, including multiple points, is
solved. In particular a parametrization of all minimal-degree rational functions
interpolating given pairs of points is derived. These considerations provide a
generalization of the results on the partial realization of linear systems.

1. Introduction

CONSIDER the pairs of points (x;, y;) (i=1, ..., ~), where each entry belongs to
some arbitrary but fixed infinite field. The fundamental problem to be investig-
ated is to parametrize all rational functions

y(x) = n(x)/d(x), (1L.1)

in particular the ones having minimal complexity, which interpolate the above
points. If these points are distinct, i.e. x;#x; for i #j, then we must have
y(xi)=yi (l=1, e ’N)'

The straightforward approach to the problem is the following. Let y(x),
defined by (1.1), be a rational function of degree m, i.e.

deg y:=max {degn, degd} =m.

We define X to be the ~ X (m + 1) Vandermonde matrix whose ith row is
xT=[1,x,...,x7", and Y:=diag(y;,...,yn) (it is assumed for simplicity
that all pairs (x;, y;) are finite and distinct). Let v and & be (m + 1) X 1 column
vectors containing the coefficients of the polynomials n(x) and d(x), starting with
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62 A. C. ANTOULAS AND B. D. Q. ANDERSON

the constant term. It is readily checked that one parametrization of the set of all
interpolating functions of degree at most m, is given as follows:

[X — YX][ ]: , (1.2)

subject to the constraints
x[6#0 (i=1,...,N) (1.3)

which ensure that x; (i=1,..., ~) is not a common factor of the polynomials
n(x) and d(x). The problem thus reduces to finding those m for which equations
(1.2), subject to (1.3), have a solution. The difficulty with this setting is that m is
not properly encoded in X and Y, and can be deduced only by trial and error.
The need for a different approach, i.e. a repackaging of the data, becomes
apparent.

For this purpose, we notice that one rational interpolating function y(x) is
determined by:

N

z (x) Yi

O) 1¢0 14
D c (1.4)

Clearly y(x;) =y, if ¢;#0. Depending on the particular choice of the ¢,’s, the
degree of y(x) is at most ~ — 1 (generically this upper bound is attained).

As already mentioned, our goal is to investigate the algebraic structure of the
problem of parametrizing all interpolating functions, in particular those of
minimal complexity (degree). One way for doing this is to try to determine those
non-zero values of the coefficients ¢; (i=1,..., ~) in (1.4) for which we have
the greatest number of pole-zero cancellations between the numerator and
denominator polynomials of y. Another way for minimizing the degree of y,
which is the one we have adopted, is the following. We consider a summation as
in (1.4) containing only ¢ <~ summands; for any set of non-zero c;, the rational
function y, of generic degree g — 1, interpolates the first g points. Making use of
the freedom in choosing the ¢;, we then try to achieve the interpolation of the
N — q points. Let

c:=[c, - ]

in order for the remaining N — ¢ points to be interpolated, ¢ must be in the kernel
of the (¥ — ¢g) X ¢ matrix

Yy e
L:= [x,-—xj'] 1,...,q;i q+1,...,N]. (1.5)
This is a Lowner or divided-differences matrix derived from the given (distinct)
pairs of points. The corresponding matrix for multiple points is called generalized
Léowner matrix. The (generalized) Lowner matrix turns out to be the fundamental
tool for the investigation of the rational interpolation problem. The main
property of this matrix is that its rank is related in a simple way, to the degree of
the corresponding minimal-degree interpolating function(s).
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The main result of Section 2 asserts that the minimal degree of the
interpolating function(s) is either rank L or ~ —rank L, according to whether
certain explicitly stated conditions are satisfied or not. In the former case the
minimal interpolating function is unique, while in the latter it is nonunique,
having ~ — 2rank L + 1 degrees of freedom. There follows a parametrization of
all minimal and nonminimal interpolating functions in the form (1.4), for
appropriate ¢ and c. The third section deals with the problem of recursiveness.
The main question is how to update (minimally) the interpolating function
whenever additional points are provided, without having to start from scratch. It
is first shown how to parametrize all minimal interpolating functions, given a
single one of them; the second step consists in showing how to determine one
minimal updating of a given interpolating function. These two results combined
provide a parametrization of all minimal updatings. The investigation of
recursiveness is based on a linear fractional representation formula, much as in
the partial realization case (see Antoulas (1985)). The results just described have
been derived for the general case of multiple interpolation points.

The (partial) realization problem of linear system theory, can be viewed as a
special case of the rational interpolation problem, where all the x;’s are the same
(conventionally taken to be the point at infinity). The main tool for the study of
the (partial) realization problem is the (partially defined) Hankel matrix (see e.g.
Kalman (1979) and Bosgra (1983)). The question arises as to what the
generalization of the Hankel matrix is in the case of the general interpolation
problem. An important consequence of our approach is the fact that the
generalized Lowner matrix, defined for pairs of points with the same x;’s, has
Hankel structure, and indeed is part of the Hankel matrix of the corresponding
partial realization problem. This shows that in the context of interpolation
problems, Hankel matrices are generalized to Léwner matrices. Thus the theory
of the (scalar) rational interpolation problem presented in this paper constitutes
the generalization of the (scalar partial) realization problem.

The interpolation problem has numerous applications in network, system and
control theory. A classical paper on the use of interpolation in network and
system theory is Youla & Saito (1967). More recent references include Chang &
Pearson (1984), Anderson & Linnemann (1985), to mention only two. In the first,
the close connection between H™-optimization in linear control systems and the
interpolation problem (with stability requirements) is demonstrated. In the
second it is shown that a problem of compensator complexity in decentralized
control reduces to an interpolation problem.

2. The minimal-interpolation problem
Consider the array of point pairs
P:=((x,~,y,-,]-_1):j=1, N Y l=1, e ey 9),

consisting of N:=v, + - - - + v, pairs; v, is the multiplicity of x;; the array P is said
to contain distinct pairs if v, =1, for all i (for simplicity of notation, in this case
y,:=Yio)- We will assume in the sequel that the x’s and the y’s are finite (see
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Remark 2.30a). A rational function y(x) is said to interpolate (x, y;;_,) iff
D7'y(x) =yij-1 (i=1,..., ), where D denotes derivation with respect to x.
Let @ denote the array containing the x,, where each one is listed v, times;
Q=(xy, ..., X5 5%e,-..,Xg); thus Q contains ~ elements.

We partition Q in two disjoint arrays S and T called the row array and the
column array, respectively, with: S=(s,,...,s,) and T=(¢, ..., ty_,) such

that

sotie{x,, ..., xe}, #{k:s,=xand f, = x;} = v,.

We denote by i’ and j’ the indices such that s, = x, and ¢, = x;., respectively.

To each such partitioning of Q, we associate an r X (¥ — r) matrix denoted by
L and referred to as Lowner or generalized Léwner matrix, according to whether
v;=1for all i, or v,>1 for some i. The (i, j)th element of L is defined as

eijzzy(si) —y() (i=

o L...,rj=1,...,8—7), (2.1)

where y(s;) =y, and y(t,) = y;-, provided all pairs are distinct. In case of multiple
points, we assume that they have consecutive indices in both S and 7. Let, for
example,

5 =8, 4= =8 _FE S, (m>k), (2.2a)

tl'=tj_1=‘ N '=tj—1:#tj—m (m>1) (22b)

The (i, j)-th element of L in this case is defined as follows, if s, # L

b= Dfog[Y_(s)__Y(’_)

i=1,...,r;j=1,... , N— .
P ]H“t:r/ (i r;j N=—T) (2.3a)

where Df(D;) denote the kth derivative with respect to s (/th derivative with
respect to ¢) and

DE () =Y pors DI y(t): =y g-15
if 5; =1; = we have to compute the limit of the above expression as s, tends to L

(clearly i"=j"). A straightforward computation using the Taylor expansion of
y(s) in the neighbourhood of s =¢, gives

K\ k1!
(= ng*’l*‘l) )= ¢ N
ok +I+1) y() (k + 1+ 1)1 krivn

2.4 ExampLE Let P contain 6 pairs of points: (xy, y1), (x3, y2), (X2, ¥21),
(*2, y22), (x2, ¥23), (x3,y3). We will compute the generalized Lowner matrix
corresponding to the following partitioning of the x’s: s, =x;, s, =5;=1x,, i.e.
S=(x3, X2, X2); ti=x,, b=ty =1x,, i.e. T =(x;, X2, x,). The resulting L is:

(2.3b)

8 Y3—n Ys=Yo ¥s—Ya  Yu 7]
X3— X X3—Xx (X3-x)° x3—x,
L= Y20~ N1 Y21 Y22 O
Xy — X3 1! 2!
_ Yo W Y21 Y22 Y23
L (o—x)? x—x, 2! 3t -
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Of fundamental importance is the equality of the degree of a rational function
and the rank of an associated Lowner (or generalized Lowner) matrix of large
enough size. For a different proof of this result in the case of distinct points, see
Belevitch (1970).

2.5 MaIN LemMa Consider the rational function y(x). Let L be any oXrt
(generalized) Lowner matrix corresponding to the o + t (not necessarily distinct)
points whose x-values are s; and t; (i=1,...,0;j=1,...,1). Then L has the
property:

rank L=degy=:q,
where L is defined by (2.3a,b).

In the sequel we will also make use of the (o + 1) X (r —1) Lowner matrix
denoted by L*, which is obtained from L by deleting a single occurrence of ¢
from 7, to form an array 7*, and adjoining it to S to form an array S*.

o,T=degy,

2.6 CorOLLARY Under the assumptions of the lemma, all q X q (generalized)
Lowner submatrices of L and L* are nonsingular.

2.7 Remark. Any submatrix of a Ldwner matrix is also a Lowner matrix. This is
not true however with generalized Lowner matrices. For this to happen, if the
submatrix in question contains the (i, j)th element of L, it should also contain the
elements: (i,j—m) (m=1,...,0) and (i—-m,j) (m=1,...,k) of L where
(2.2) is assumed to hold. O

Proof of Lemma 2.5 (Sketch). Let y(x) = n(x)/d(x), where n and d are coprime,
and degy = g. We denote by B the g X g Bezoutian of the polynomials » and d; it
is well known that B is non-singular if and only if the polynomials # and d are
coprime. For the definition and properties of the Bezoutian of two polynomials,
see Fiedler (1984), as well as Anderson & Jury (1976). The following holds

Tp, _ nE)d(E) —n(@)d(s) _ | y(s)—y()
v Bw = R =d(s) 7“ > d(t) (2.8a)
where
vii=[1l,s,---,577Y], whi=[1,t -, 7).

Let §:=(s;:i=1,...,0)and T:=(¢;:j=1,..., 1) be given. Formula (2.8a)
implies
VBW = ALA, (2.8b)

where V is the o X g Vandermonde matrix whose ith row is [1,s;, -+, s?‘l],
while W is the ¢ X T Vandermonde matrix whose jth columnis (1,¢, - - -, t}"l),

A, :=diag[d(sy), . . ., d(s,)], A :=diag [d(ty), . .., d(t)],
and o _YE)=y@)

v Si _t,
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We assume that none of the s; or 4 is a pole of y(x). If these points are distinct
then L is the Lowner matrix constructed with row and column arrays S and T (cf.
(2.1)). In this case we can rewrite

L=A'VBWA (2.8¢c)
Since n and d are coprime, B is nonsingular. Thus if o and 7 are greater than g,
rank L =rank B =gq.

If the entries in S and T are not distinct, L has to be replaced by the
generalized Lowner matrix, denoted by L (cf. (2.3a,b)); in the remaining part of
the paper after the end of this proof, for simplicity of notation, the bar will be
dropped.

Let § have one multiple entry s,, of multiplicity v, i.e., s;=s5,=---=s5,. In
this case, the Vandermonde matrix V does not have full rank, and thus the ranks
of L and B are not the same. In order to find a matrix L whose rank is equal to
that of B, we proceed as follows. Assuming temporarily, that s,,...,s, are
different, we differentiate the expression in (2.8c) i times with respect to
si+1 (=1,...,v—1), and subsequently set s,, . . ., s, equal to s;; let us denote
by D:=D}'---D:D,,, these successive derivations. Then

DL =D(A7'VBWA )= D(A7'V)BWA .
It is readily checked that
D(AT'V)=ETDv,

where e/, =[v:0P, v,:_109™Y, ..., ¥15, 0, ..., 0] is the (i + 1)th row of E,

i!
= ———————— 1 =<7
K TF I
is the corresponding coefficient of the binomial expansion, and Y’ denotes the
jth derivative of d~'(s;) with respect to s;. Thus

L:=[DL];o..cy,—, = [E(DV)BWA Y, ~. —, s,

has the same rank as B, since E is nonsingular, and [DV]SZ:...:SV:Sl i1s the
corresponding generalized Vandermonde matrix which has full rank (see e.g.
Aitken (1964)). L as constructed above is the generalized Léwner matrix defined
in (2.3a).

In a similar way, more than one multiple point in S and multiple point in T
can be treated. If in addition some points in $ are equal to some points in T, the
resulting expression is the one given in (2.3b). O

Proof of Corollary 2.6. The result is an immediate consequence of the lemma.
The restriction to generalized Lowner submatrices (see Remark 2.7) follows from
the nature of the D operator, defined in the proof. O

" To every r X (v — r) Lowner matrix satisfying rank L <~ — r, one can attach a
rational function as follows. Let ¢=[cy, ..., cy_,]T #0 be such that Le=0. A
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rational function y;(x) is defined through the equation:

N-r
s ijL(x) @) _ o 2.9)
i=1 X =y
Similarly, if rank L <r, a row vector b' =[by, ..., b,]#0, satisfying bTL =0
associates a rational function to L as well.

To every generalized Lowner matrix one can also attach a rational function.
Again let ¢ be a non-zero column vector such that Le =0. With

bd

_yx) —y()
pL(x’ t)'_ x—t ]

a rational function y, (x) can be defined as follows.

[2 C"J-ID{_IPL(X) t):' = 0) (210)

Lj t=1 -
where j ranges from 1 to the multiplicity v/ of # in 7, and ¢ ranges over the 6’
distinct points of T'; also, the jth derivative of y(¢) with respect to ¢, evaluated at
t=1is y;; finally

c;is the (vi+vy+ -+ v/ +j+ 1th element of c.

A similar construction can be carried out, based on a non-zero row vector b'
satisfying b"L = 0.

Solving (2.10) with respect to y,(x, ¢) (with the dependence on ¢ shown
explicitly) we obtain

yi(x, €) =n.(x, ¢)/d.(x, c); (2.11a)
the numerator and denominator polynomials are defined as follows:
ni(x, ¢):=p"(x)Ye, d.(x,c):=p"(x)c; (2.11b)
pT(x) is a row vector of size N — r:
P'x):=[pix) - pe], (2.11c)
(vi = DI pix):=[(x —x)""! (x—x) 1] ]1;[ (x—x)"; (2.11d)

x; ranges over the 6 distinct entries of 7. Also,
Y:=diag(Y,, ..., Yy), (2.11¢)

where each Y is an upper-triangular square Toplitz matrix of size v/, with the
(j + Dth element of the first row equal to y,/j! (j=0,1,..., v/,—1). Finally
c=[ci,...,ce]" is a column vector of size N —r where 6’ is the number of
distinct x;’s in the array T'; each component of ¢ is

’ Ci,v,"l]T

where v; is the multiplicity of x; in the array 7. In the above considerations we
have assumed that equal x’s have consecutive indices.

CH:[Cioy Cits - - -
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Notice that the degree of y, constructed above, is at most ¥~ — r — 1. For future
use we note that the coefficient of the highest power of x in the denominator of y,
1S:

CIO + C20 + ot + Cgf(). (2 12)

2.13 ProrosITION The pair of polynomials n, and d, given by (2.11a—e), satisfies
for each multiple point (x;,y,;_1) (j=1,...,v,) the following system of linear
equations:

Ayl=b (@(=1,...,0). (2.14)
Here, A, is a square, lower-triangular matrix of size v;; its (k, [)th element is
.Ykkl,l~1Dk_ldL(xi) C) (l = 1) s ey k7 k = 1) vy Vi);

with the y's as defined previously; y!:=[vio, Y, .-, Yiv-1l"s b: is a column
vector of size v;; its kth element is D* 'n,(x;, ¢) (k=1,...,v,); D denotes
derivation with respect to x.

The proof of this proposition involves straightforward but rather tedious
aigebraic manipulations and will be omitted. We just mention that for points
belonging to the column array 7, the corresponding number of equations in
(2.14) are satisfied for all values of ¢, while for the remaining points, the fact that
c is in the kernel of L has to be used.

2.15 CoroLLARY The rational function y, interpolates the multiple point
(x;, yij—1) in P, if dy(x;, ) #0, i.e. if x —x; is not a common factor of n; and d,,
given by (2.11).

Proof. From (2.14) follows that y, interpolates each multiple point, provided
that A; is non-singular. Since A, is triangular with d,(x;, ¢) on the diagonal, the
desired conclusion follows. OO

2.16 ExampLEs. (a) In Example 2.4, suppose that there exists c¢=
[¢10, €205 €21]" #0 such that Le=0. The rational function y. attached to L is:
yi(x, ¢)=n.(x, ¢)/d. (x, ¢), where

nL(x, C) = 510()( - X2)2 + Ezo(x - xl)(x _xZ) + 621(x —~x1),

dL(x, C) = Cl()(x - x2)2 + Cz()(x - xl)(x - XZ) + Cz,(x - xl),
and

C10 = C1o0Y10s C20 = CaoY20 + C21 Y21, C21 = €21Y20-

b Ifv,=1(@G=1,...,8"), then

d;(x,¢)= _82 ciOH (x—x;). O

jEi

a
n(x, €)= 2 CioYio H (x ——x,-),
i=1 j#i
We now turn our attention to the investigation of the basic properties of y,,
defined by (2.11), where L is square or almost square, i.e. the difference of the
number of rows and the number of columns is 0 or £1. In the remainder of this
section we will use the notation

m:=4n, if ~is even, and m:=3(~ — 1), if ¥ is odd.
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The first result shows that to every square or almost square Lowner matrix with
nonzero (column or row) kernel, formulae (2.11) associate a unique rational
function (see also Remark 2.20b).

2.17 LemMma Let L be some m X m or m X (m + 1) Léwner matrix formed from
the N pairs of points in P, with rank L <m, where equality holds only if N is odd.
There exists a unique rational function attached to L via (2.11).

Proof. Assume, for simplicity, that ~ is even (similar arguments hold for ~ odd).
There exists a column vector ¢ such that Lc=0. Let b be a column vector
satisfying either 8L =0 or Lb=0, with b+#c Suppose that y.=n./d, and
¥» = np/d, are rational functions of degrees g, and g, constructed using formulae
(2.11). The degree of both y, and y, is at most m — 1. Thus, by Corollary 2.15 y,
interpolates at least ~ — (number of common factors between d. and n.) =
N—(m—-1—qg)=N—m+1+gq, points of P and, similarly y,, interpolates at
least N —m + 1 + g, points. It follows that y, and y, interpolate at least

N=2m+q.+qs+2=q.+qs+2>q.+qs

points in common among the ~ given. This implies

ye®) = yp(x)=r(x) [ (x - x)

where x; are the common interpolation points and r(x) is some rational function
with poles different from the x;’s. The rational function on the left has degree at
most g, + q,, while the one on the right has degree at least ¢g.+ ¢, + 2. Thus
equality can hold only if r(x) =0, which implies y.=y,. O

The converse of Corollary 2.15 is given next.

2.18 CoroLLARY Let L be as in the lemma. If (x —x)% (i=1,...,0), is a
common factor of n, and d, defined by (2.11), y, interpolates exactly (x;, y;;_1),
forj=1,...,vi—aandi=1,...,80.

Proof. Let d; =(x —x;)*d,, and n,=(x —x;)%A,, with a;<v, Substituting
these expressions in (2.14), the first «; equations turn out to be of the form 0=20.
The remaining v; — a;, can be written in matrix form as A,y =b;, where the
matrix A;, and the column vectors ¥ and b,, are defined the same way as their
unbarred counterparts in (2.14), with v, replaced by v; — a;, n, by 7i,, and d, by
d,. Thus, y, =A,/d, interpolates (x;,y,;;), for j=1,...,v,—a; and i=
1,...,6.

To prove that y; does not interpolate any of the remaining points of P we
proceed as follows.

By Lemma 2.17, y; is independent of the choice of ¢. Let rank L = ¢q; assume
for simplicity, that the first g columns of L are linearly independent. Then, ¢
satisfying L¢ = 0, can be chosen as follows:

c=fc; - ¢4 O - ()]T

Thus, the degree of y, is at most g. Let the degree of the greatest common
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divisor of n, and d; be u; then degy, = g — u. Assume that y, interpolates more
than N~ — u points, namely ~ — u + &, with 7 = 0. We will show that 7 =0.

Let L, be the Lowner matrix obtained from L by deleting the rows and the
columns which correspond to the u — 7 points which are not interpolated by y;;
we have rank L, = g — & + . By construction, however, all the points making up
L, are interpolated by y; , which has degree g — u. Main Lemma 2.5 implies that
the rank of L; is equal to ¢ — u, which in turn implies 7 =0. [

From Corollary 2.18 we obtain immediately the following crucial result.

2.19 CoroLLarY Under the assumptions of the lemma, let L be an arbitrary full
rank q X (q+1) Léwner submatrix of L, where q:=rank L. The following
statements are equivalent.

(a) y; interpolates all pairs of points in P.

(b) All g X q Léwner submatrices of L and L* are nonsingular.

(c) degy, =rank L=gq.

(d) x; is not a common root of n; and d;, foralli=1, ..., 6.

Proof. By Corollary (2.6), (a) implies (b).

Let ¢ be such that Lé =0. According to (2.17) there exists a unique rational
function y;, attached to L. (b) implies deg y; = q. There exists a column vector
¢ # 0 composed of the elements of ¢ and of zeros in appropriate positions, such
that Le = 0. Since by (2.17) there is a unique rational function y, attached to L,
we have y; =y, . This implies (c).

Since the degree of y; is at most g, (c) implies (d).

Finally, by (2.15), (d) implies (a). O

2.20 Remarks. (a). From the arguments used in the proof of Lemma 2.17, it
follows that y, interpolates at least N —m + degy, points. Considering Corollary
2.19(c), we conclude that y; interpolates exactly » — g + deg y, points.

(b). The considerations of Lemma 2.17 and Corollary 2.19 remain valid if,
instead of being (almost) square, L is taken to be some Ldwner matrix having
rank g (see Corollary 2.24). If however, with the same points, a Lowner matrix
L' of size r X (v — r), with r <g, is formed, then the rank of L’ will be (at most)
r. In this case Lemma 2.17 does not apply. Actually, a number of different
rational functions are associated to L' via (2.5,6) (see (2.26), and Remark 2.30c).

(c). By Corollary 2.19, if there exists one Lowner submatrix L of L which does
not satisfy the conditions stated in Corollary 2.19(b), there exists none which does
$O.

Corollary 2.19 implies therefore, that in our study of the interpolation problem,
we can restrict our attention to any arbitrary q X (q +1) full-rank Lowner
submatrix L of L, where g is the rank of L.

(d). Let L as in Corollary 2.19 have row and column sets S and T. For x; e T,
Corollary 2.19(d) reduces to c; ,._, #0, where v; is the multiplicity of x; in T. O

If the conditions of Corollary 2.19 are not satisfied, the theorem below shows
that the functions interpolating the given ~ pairs of points P, have least degree

N—g.
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2.21 THEOREM Consider the array of N pairs of points P, and some associated
mXm or m X (m+1) (generalized) Léwner matrix L. Assume that degy, <
rank L:=q. There exists a rational function of degree n — q interpolating all the
points in P. Furthermore, no such function of degree less than N — q exists.

The proof of this theorem is based on the following lemma.

2.22 LemMa (Extension of Lowner matrices) Let L be a o X v (generalized)
Lowner matrix with rank L=gq. Let L and L* denote the o x(t+1) and
(o + 1) X T (generalized) Lowner matrices obtained from L by adding one more
column or row using some pair (X, v), distinct from the all pairs forming L.

(a) If o =1 =g =m then (%, §) can be chosen so that all (generalized) Léwner
submatrices of L and L* of size m are nonsingular.

(b) If o=1=m>q then (%, ) can be chosen so that rank L =q + 1.

() If o=m>q and t=m+1, then (%, §) can be chosen so that rank L* =
g+1.

(d) In (b) and (c), L and L* contain a singular Léwner submatrix of size g + 1,
for any choice of (x,y). In particular, any Lowner submatrix of size q +1
obtained by deleting the (t+ 1)th column of L, the (o+ 1)th row of L*, is
singular.

Proof of the extension lemma. Consider the pairs of points
(x,-,y,-,j_l) Ozl,...,Vf;i=1,...,6)
vi+---+vg=1 Let
yx) —y(@®)
x—1

p(x) t):= b [D{—ly(t)]t=x,:=yi.j—1’ (] =1; ce e Vi l = 1) LR ] 0);

and
d(x, y):= [Z a0/ 'p(x, t)] : (2.23a)

We will show that if the a; are not all equal to zero, there always exists a pair
X%, ¥) such that _

*.7) d(x, 7) #0. (2.23b)
We can write

]
d(x, ) [ @ —x)" =yd(x, a) ~ n(x, @),
i=1
where
a:=[ai - a, a,, 4", dx,a):=p"(x)a,

and p(x) is defined by (2.11c,d). If the polynomial d(x, @) is not identically zero,
then (2.23b) can be satisfied. To show this, notice that p"(x) = v'M, where

a;:=ay

vi=[x"! ... x 1] O

and M is such that det M =[l;(x; —x;)"#0. Thus d(x, a)=v"Ma is not
identically zero, unless @ = 0. This implies the existence of ¥ such that d(x, a) #0;
(2.23b) is satisfied for any y # n(x, a)/d(%, a).
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With the aid of this auxiliary result, we can now prove parts (a)—(d).

(a). L and L* are obtained by appending to L an additional column or row
using (%, ¥). Let 8, ..., 8, with k<m, be the m X m (generalized) Lowner
submatrices of L which contain the last column (the remaining m X m Lowner
submatrix does not contain the last column and is nonsingular by assumption).
The determinants of these submatrices (expanded e.g. with respect to the last
column) can be expressed in terms of d, defined in (2.23a) for some appropriate

set of pairs of points (x;, y,;_,); let di(X, y):=det S, (i=1, ..., k). Similarly, let
df(%,y) (i=1,...,1) denote the determinants of the m X m Lowner sub-
matrices of L* which contain the last row. As shown above, the polynomials
d; i=1,...,k)yand df (i=1,...,1) are not identically zero. Consequently,
each one is zero at finitely many points. If we choose % different from these
finitely many points, thend; (i=1,...,k)andd] (i=1,...,1), evaluated at x,
will be nonzero. If y is chosen different from the finitely many values

ni(-f) a) . n;k(i) a) .

=1,...,k), — =1,...,1),

iz a O Y Tea ¢ )
we- obtain the desired result, i.e. d(x, y)¥0 (i=1,...,k) and d}(x,y)+#
0(G=1,...,0.

(b). There exists a (¢ +1) X g Loéwner submatrix L' of L, which has full
column rank. Using the procedure discussed above, we can append to L' an
additional column, using an appropriately chosen pair (%, ¥), such that the
augmented matrix, denoted by L' has full rank g + 1. This implies that the rank
of Lisq+1.

(c). A g X (g + 1) full row rank Lowner submatrix of L is chosen in this case;
the pair (x, y) is such that the augmented (g + 1) X (g + 1) matrix is non-singular.
Then the rank of L* is g + 1.

(d). This part follows by counstruction. [

Proof of 2.21. From Corollary 2.19 follows that what we are looking for is a
Lowner matrix L, that contains L as a submatrix and satisfies deg y, = rank L,;
equivalently, L, must be such that some full-rank submatrix of L,, of size
(rank L,) X (rank L, + 1), satisfies the property on the Lowner submatrices given
in (2.19b).

By assumption, the rational function attached to L has degree less than rank L.
Using part (c) of the Extension Lemma, we construct from L the augmented L*
by adding one more row, so that rank L* = g + 1. We successively apply parts (b)
and (c) of the Extension Lemma ~ —2g —1 times, i.e. until we obtain an
(v —q) X (N — q) nonsingular (generalized) Léwner matrix. By part (a) of the
Extension Lemma we can add one more column such that the resulting L, has the
required property, i.e. all (v —q) X (v — g) Lowner submatrices of L, and L} are
non-singular, which, by Corollary 2.19, implies that degy, =rankL,=~—gq.
Hence y, (x) is a rational function of degree ~ — ¢ interpolating the given ~
points.

To prove that there exists no function of degree less than ~ — ¢ interpolating
these points, we notice that there are two ways to obtain L, from L: (i) by
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augmenting the rank at each one of the N — 2q — 1 steps, or (ii) by keeping the rank
constant at least during one of these steps. In the first case, by part (d) of the
Extension Lemma, at any one of the intermediate steps, no full-rank submatrix
can satisfy the required property of Corollary 2.19(b), because each one
necessarily contains the new row/column, and the Lowner submatrix obtained by
deleting this last row/column at any intermediate step, is singular. In the second
case, the required condition of Corollary 2.19(b) cannot be satisfied, a fortiori,
not even by L, itself, in contrast to the situation in the first case (y., in the
second case does not interpolate all given points).

Thus no interpolating function of degree less than v — g exists. [

The following result shows that the rank of L does not depend on the particular
partitioning of the x; in the row and column arrays § and T as long as one of them
contains a certain number of elements.

2.24 COROLLARY Suppose that a given (almost) square Lowner matrix L has
rank g. Then any k X (N — k) Léwner matrix, with N —q =k = q and built from
the same data, has the same rank g.

Proof. If the given points are interpolated by a function of degree equal to
rank L = g, then the result follows from Main Lemma 2.5. Thus, we assume that
the ~ points are interpolated by a rational function of least degree » — . Let B be
the Bezoutian of such a rational function. By the Main Lemma,

Vs wi=a.a,
v

and rank B=rank L,=~—¢q; L is a submatrix of L,; and V; and W, are
(possibly generalized) (almost) square Vandermonde matrices built from the ~
given points in the original order they were chosen to form L. Furthermore, V,
and W, are also Vandermonde matrices of appropriate size so that the composite
matrices pre- and post-multiplying B are square; they contain points interpolated
by the rational function in question, distinct from the original » points.

The ~ original points are re-partitioned in two arbitrary sets of k and ¥ —k
elements; the corresponding Vandermonde matrices are denoted by V, and W;;
let the remaining ~ — 2g points form the Vandermonde matrices V, and W, so
that, as before, the composite matrices pre- and post-multiplying B are square.
By the Main Lemma

1% L _
[ -1] B[W, W,]= ApL,Aw,
v,

where rank B =rank L, =N —gq.

If the sub-Léwner matrix L of L, formed from the second partitioning of the
original array of points has rank § <g then, by the Extension Lemma 2.22, the
rank of L, can be at most ~ — g +§ —¢, which is equal to N—q iff §=g. A
similar argument holds if § =q. O

Corollary 2.19, Theorem 2.21, and Corollary 2.24 now yield our main result.

2.25 MaIN THEOREM Given the array P of N pairs of points, let L be some
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(generalized) Lowner matrix of size mXm or m X (m+1), where m =i~ or
m = 3(N — 1). Assume that rank L =:q, and let y, be the (unique) rational function
attached to L via (2.11), if it exists.

(a) If y, exists and degy, = q, then y, is the unique rational function, of least
degree q. = q, that interpolates all the points in P.

(b) Otherwise, there is a family of rational functions of least degree q, =N — g,
interpolating the given points. This family is parametrized in terms of 2q, — N + 1
=N —2q + 1 parameters.

2.26 Tueorem (the parametrization of all interpolating functions of degree less
than ~) If q.=q, there exist interpolating functions of degree equal to q, and
greater than or equal to N — q.

If g« =N — q, there exist interpolating functions of degrees greater than or equal
toN—gq.

The interpolating function of degree q is unique. There is a family of
interpolating functions of degree at most N — q+m—1, for each 1=1,...,q,
parametrized in terms of N —2q + 2 — 1 parameters, as follows. L, denotes some
(generalized) Lowner matrix of size (9 — ) X (N — q + 7). Let €, be the set of all
column vectors ¢, which satisfy

Loe, =0, d;(x,¢)#0 (i=1,...,8) (2.27a,b)

where d, is defined by (2.11b), and x,, are the distinct points of P. The family of
all interpolating functions of degree at most N —q + m — 1 is (Yo (x, ¢:):c, € %.).

Proof of 2.26. Let y,(x) and y,(x) be two rational functions interpolating the ~
pairs of points in P. It follows that

1(®) = ya(x) = r(x) H (x —x)",

where, as in the proof of Lemma 2.17, r(x) is some rational function with poles
different from the x;. The rational function on the left-hand side of this equation
has degree at most degy, + degy,, while the one on the right-hand side has
degree at least v. If degy, =g, the inequality ¢ + deg y, <w, implies r(x)=0.
This shows that y, (if it exists) is the only interpolating function of degree less
than v —g¢.

Let y(x) be a rational function interpolating ~ pairs of points. If 2degy =w~, a
simple count shows that the family of all interpolating functions of degree equal
to degy, has 2degy —~ +1 degrees of freedom. Therefore, the family of all
interpolating functions of degree at most v — g + o — 1, is parametrized in terms
of ¥ —2q + 27w — 1 parameters, for x =1, ..., q.

The family of rational functions y, attached to L, via (2.27a,b) is a family of
interpolating functions of degree at most ~ — g+ — 1. The Main Theorem
guarantees that conditions (2.27b) can be satisfied for all 7 = 1,...,q. The
(normalized) ¢, are parametrized in terms of ¥ — 2q +m — 1 parameters. Hence
Y1, provides a parametrization of all interpolating functions of degree at most
N—qg+m—1.

Notice that for & = ¢, the matrix L, is empty, i.e. condition (2.27a) is empty.
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The only requirement on ¢, in this case is (2.27b) which is equivalent to the
requirement that each one of its components be nonzero (cf (1.4)). O

The next result is concerned with minimal proper rational interpolating
functions. Recall (2.12).

2.28 CorOLLARY. Under the assumptions of the theorem, the least-degree proper
rational function which interpolates the given points is:

(a) If, in addition to the already stated requirement that degy, =gq, the
condition ¢y + Cao+ + - + €4 41,0 ¥ 0 is satisfied, then g, =q.

(b) Otherwise, q,=N— q. In this case, all such least-degree functions are
parametrized as shown in (2.26), where c satisfies the additional constraint

CiotcCapgt--+capF0;
6 is the number of distinct points in the column array Tof L:=L, for x=1.

2.29 DiscussioN (the connection with the realization problem) Let the array P
contain a single multiple point of multiplicity ~, denoted by (x,yi-) (i=

1,..., ). By (2.3b), the (almost) square generalized Lowner matrix is given by:
Yivrj—1
PP L0 i S
Yoi+j-1)

Clearly, L has Hankel structure.

The corresponding partial realization sequence is (ay, 4, - - -, Ay-1), Where
a;:=y,/i!. The partially defined Hankel matrix defined for the above sequence
(see Kalman (1979)) is square of size ¥ — 1, where:

if i4+j<w, H;;:=? otherwise,

Hj:=a;.; j

Y

where ? stands for undetermined elements conserving the Hankel structure of H.
We say that H has rank r iff r is the largest positive integer such that the leading
r X r principal submatrix of H is non-singular, independently of the values of the
undetermined elements denoted by ? (see Kalman (1979) and Bosgra (1983)).

It follows from the above definitions that L is the principal m Xm or
m X (m + 1) submatrix of H, according to whether ~ is even or odd.

If rank H=:r <m, clearly, rank H =rank L. If however, rank H =r>m, it
can be shown that rank L=n~—r, and the mth column of L is linearly
independent from the previous m — 1 columns, as predicted by Corollary 2.19(b).

Thus, the problem we have solved reduces to the conventional partial
realization problem, if all the x; are the same. This shows that the Léwner matrix
is the generalization of the Hankel matrix, when dealing with the general rational
interpolation problem.

For a different result on the connection between the realization and the
interpolation problems see Audley, Baumgartner, & Rugh (1975). O

2.30 Remarks. (a) Throughout this section we have assumed that both the x and
the y values are finite. (a) If at some finite values x;, the corresponding y values
are infinite, we can write y(x) = y;(x)y,(x), where y;(x):=1I; (x —x;)"" and y,(x)
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is subsequently determined to take care of the remaining (finite) interpolation
values. (b) If at infinity, y =n/d is required to be finite, then we must have
degn <degd. (c) If, at infinity, y is infinite, then the interpolation function
satisfies degn >degd. Cases (b) and (d) lead to results similar to those of
Corollary (2.28). Finally, notice that with values at infinity, some restrictions
apply. If y(x;) is infinite, so are its derivatives at this point, and if y at infinity is
finite, so ark all its derivatives. Case (b) can also be treated using a bilinear
transformation.

(b) From (2.27a,b) follows that there are » —2g +2x — 1 parameters taking
arbitrary values, modulo a set of measure zero consisting of the union of the
hyperplanes given by (2.27b). The latter are hyperplanes, because by (2.11b),
d; (x, ¢;) is a linear function of ¢,. For = =1, the linear constraints (2.27b) are
equivalent to the coprimeness of the numerator and the denominator polynomials
of the interpolating function y, .

(c) Consider L of size o X (v — 0). Following Lemma 2.17, Remark 2.20b, and
Corollary 2.24, there is a unique rational function attached to any L whenever
g < 0 <m, where q is the rank of an almost square L. The degree of this function
is g or less than g, according to whether g, = g or g, =~ — g. In the first case the
rational function is also an interpolating function.

If o <gq, uniqueness is lost, and families of rational functions of degree at most
N — o — 1 are attached to L. If these families satisfy (2.27b) they become families
of interpolating functions; they are parametrized by considering linear combina-
tions of some set of basis vectors for the kernel of the corresponding L.

(d) Suppose that P is a symmetric array, i.e. (x;, ;) is in P implies (x}, y}) is in
P, where * denotes complex conjugation. Let n(x, v)/d(x, 8) be some (possibly
minimal) interpolating function; v and & are the vectors of the numerator and
denominator coefficients. It follows that

n(x, v) +n(x, v¥)
d(x, 8) +d(x, 6*)’

is a function with real coefficients, interpolating the same array of points P.

(e) The classical investigation of the algebraic aspects of the interpolation
problem (e.g. the Cauchy interpolation problem, the connection between rational
interpolation and continued fractions, etc.) is essentially limited to the generic
case, i.e. the case where 2m + 1 pairs of points are interpolated by a rational
function of degree m. The investigation of the nongeneric case is concerned with
the issue of the so-called inaccessible points. These are the points which are not
interpolated by a rational function of degree less than ~—g¢q, whenever
g+ =N — g. The reader is referred to Belevitch (1970) and Meinguet (1970) for a
discussion of these issues.

Some of the results presented in this paper have been discussed in the former
reference. In more detail, the Léwner matrix (2.1), Main Lemma 2.5, Corollaries
2.6, 2.19, and 2.24 are developed in Belevitch (1970) in the case of distinct points.
The contribution of this section consists mainly of Theorem 2.21, Extension
Lemma 2.22. Main Theorem 2.25, and Remark 2.29 on the connection between
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the realization and the interpolation problems. Moreover, all results have been
derived in the general case of multiple points.

Various facts concerning square Léwner matrices are given in Fiedler (1984).
Further references on the classical aspects of the interpolation problem are Walsh
(1935), Shapiro & Shields (1961). For a recently developed operator-theoretic
approach to this area, see Ball (1983). O

The main results will now be illustrated in terms of numerical examples.

2.31 ExampLes (a) Recall example (2.4). Let x,=0, x,=1, x3=2; y, =0,
y20=0, ¥21 =3, ¥ =0, y;3=3, y3=1. The corresponding generalized Lowner
matrix is

B—=

S e
[awiiN STE

L=
0

Clearly, rank L =2. Moreover, the condition of Corollary 2.19(b) is satisfied
(consider e.g., the 2 X 3 submatrix L consisting of the first 2 rows). Notice that
although the 2 X 2 submatrix of L consisting of the first and the third columns is
singular, Corollary 2.19(b) holds true, because this submatrix is not a Lowner
submatrix. Therefore, y, attached to L via (2.5,6) is the desired interpolating
function. We have

=
(SIS

C=[C10 C2o C21]T=[1 0 _1]T

and Example 2.16(a) implies that y; is given by:

JL yL YL
ooty
1Jc Ox (x—17% (x-1

M=

that is,
x(x—1)

o

Notice that the degree of y, is 2, as predicted by Corollary 2.19(b).
(b) Let us now take y; =0, and the rest as in (a). The corresponding Lowner
matrix in this case is:

0 0 3
L=(0 3 0},
104

which has rank 3. Thus, part (b) of the Main Theorem applies. It predicts that the
minimal interpolating function has degree 3. Applying Theorem 2.26 we obtain
the parametrization of all interpolating functions of degree 3, which has one
degree of freedom. Let L have row array $=(x,, x,), and column array
T = (x4, x2, X2, x3). It follows that

1

1 |-

2

2

N O
jen]

S N
(10
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Let ¢:=[c10, €20, 21, c30]T satisfy Lc = 0; it follows that ¢, =0, and ¢c;p= —¢p—
C,y; therefore
1
Y y y 2 y
wa ()Jo:—l_c21 [(x—l)z—x—l] _(Cw+c21)x—2=0’

—Ccux(x = 1)(x —2)

2[(:21)63 + (2C1(] - 3021)x2 - (4C10 - 3021)x - 2C10] '

, ie. ylx)=

The function y interpolates all points, iff conditions (2.27b) are satisfied, i.e.

C10¢0; C2 #0 C10+C219‘:0.

It so happens that the above conditions, in particular c,; #0, insure the
properness of the rational function.

(c) In this case, we let y; =0, y, =1, y;3=1, y3=0, while the remaining
values are as in (a). The corresponding, generalized Léwner matrix is

00 0
L=|o o |,
03 &

which has rank 2. Unlike case (a) however, the conditions of Corollary 2.19(d)
are not satisfied. Hence the second part of the main theorem asserts that the least
degree of the interpolating functions is ¢, =~ — g =6—2=4. Using Theorem
2.26 we obtain a parametrization, having three degrees of freedom as follows. Let
L have row array S= (x2), and column array T= (x1, x5, x5, X2, x3). It follows
that

=0 0} & o],

which implies that if ¢ = [cyq, €20, €21, €22, €30]", satisfies Le =0, then ¢, = —3¢s,.
Therefore

y y
0=+ C +¢oq
X X -

1
_3C21( y - ) +C3o_y :0,
1 =

Y
(x -1y 1 x-1 x—2

that is,
yx)=
3cx(x — 1)*(x —2)
ciolx — 1)(x = 2) + caox(x — 1)*(x — 2)
+epnx(x — 1)(x —2) = 3cox(x = 2) + c30(x — 1)°

This function interpolates all points, iff conditions (2.27b) are satisfied, i.e.
c0#0, cn #0, Cy0# 0.

For properness, the additional condition

Cio+ Cag+ 3 F0.

must be satisfied.
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(d) Consider the seven pairs of points (0,3), (1,1), (=1, =), 5,9, (-5.4),
(3,2), and (6, ). The corresponding Léwner matrix with row array T = (0, 5, 3)
and column array S = (1, —1, =5, 6) is

[
—

[T R
[N
o D= o

The rank of L, is one, and conditions of Corollary 2.19(b) are satisfied. Hence
g+ = 1. Actually, with

c=[0 0 2 9], Le=0,

we see that (2.16b) implies y, (x) = (5x +3)/(2x +6). If the 8th pair (2,2) is
added to the set, the Lowner matrix with S = (0, 5, 3, 2) and T as before is

L
L=[7] o -3 -d
The rank of Lg is two, but conditions of Corollary 2.19(b) are not satisfied. Thus
with the addition of one more pair, the minimal degree g, jumps from 1 to
8—rank Lg=6. O

3. Recursiveness of the interpolation problem

Let yx(x) be a rational function which interpolates the array Pk containing
K:= K+ -+ Ko (multiple) points (x;, y;;—1) G=1,...,k;i=1..., 6). Let
ya(x) = nn(x)/dn(x) and yy(x) = npy(x)/dyu(x) be rational functions which inter-
polate the subarrays Py and Py of Py, containing ~¥:=v;+---+ v, and
Mi=y, + -+ Up points, defined by j=1,...,v;and j=1,..., & (both for
i=1,...,0) respectively; here, v;<k; and y; <k; (i=1,..., 6). Notice that if
v, or u; is zero, then the simple point (x;, y,0) is not interpolated by y n(x) or
ym(x), as the case may be.

The first step towards a theory of recursive minimal interpolation is to express
yk as a function of yy and y. To that end we define the rational functions

pi(x):= H (x —x)" ™", (3.1a)

i)

px):= IJ] (x —x)" 7",

and the rational function s(x) which satisfies the following interpolation condi-
tions at each x; (i=1,..., 0). If

Osu,<v,sk, (3.1b)
then
; Y L P dn(x) yx(x) — yalx)
”“”‘o+w—um[w ( muwmuwan—ymnﬂpn

(G=0,1,...,k5—v,—1), (3.1c)
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where D/f(x;) denotes the jth derivative of the function f(x) with respect to x,
evaluated at x = x;; further,

1 dpx))
p(x;) dpl(x;)

The- interpolation conditions at those points x; satisfying 0=<v, <y, <k, are
defined similarly.

S(x,) * — lf V= U;. (3. ld)

3.2 Lemma  With p(x) and s(x) defined as above, the following holds true:

nn(x) + na(x)p (x)s(x)
dn(x) + dy(x)p(x)s(x)

Computations similar to those involved in the proof of the above lemma are
carried out in the proof of Theorem 3.9; the proof of Lemma 3.2 is thus omitted.
We just note that condition (3.1d) guarantees that no one of the points
interpolated by both yy and yu is a common root of the numerator and the
denominator of (3.3).

The above considerations show that the problem of determining a function
interpolating the points in Pg, given two nonidentical functions interpolating
subarrays Py and P, thereof, can be reduced to an interpolation problem which
involves the additional points only (cf. (3.1c)). This is achieved with the aid of the
linear fractional representation formula (3.3).

Our next goal is to introduce minimality in the above considerations. For the
remainder of this section we will assume that v,=u, (i=1,...,0) and
k=~ +1; this means that Py is a subarray of Py and Py contains one pair of
points more than Py. Theorem (3.9) shows how the linear fractional repre-
sentation formula (3.3) yields a minimal updating (when the additional point is
simple or multiple) provided y, is chosen appropriately. The first step towards
this goal is

yx(x) = (3.3)

3.4 THEOREM Let yn_,(7;x) be a parametrization of all minimal-degree inter-
polating functions of the N — 1 points Py_,, in terms of some vector parameter x,
of appropriate dimension. Let yN(ay; x) denote some minimal-degree interpolating
function of the N points py. A parametrization yn(6;x) of all minimal-degree
interpolating functions of the n points, in terms of the vector parameter o, is
obtained as follows.

(a) If degyn=degyn_,, then yn(0;x)=yn_(7;x), where 6:= 7 is obtained
by appropriately restricting 7; the vector m has either one degree of freedom more
than & or is empty.

(b) If degyn>degyn_,, we have

nn(G, x) + ny_i(7; x)p(7; x)
dnM(Gy; x) +dy_ (5 x)p(T, x)°

yn(o;x)= o:=(m, 1), (3.5a)

where p(t;x)=(x —x,)p(%;x); also x; is the additional point contained in Py,
while p(t;x) is an arbitrary polynomial of degree degp =degyy—degyy_,—1

y
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and the parameters 5t and t satisfy
dy(ay; x) +dy_i(7; x)p(T; x;) #0, (3.5b)

with [ ranging over the distinct points in Py_,. Moreover t can be chosen so that
the numerator and the denominator of ya(o; x) depend affinely on o, provided that
numerator and denominator of yn_1(; x) depend affinely on .

For the proof of the Theorem we will use

3.6 PrROPOSITION Let yy be a minimal-degree rational function interpolating N
pairs of points; a corresponding (almost) square Lowner matrix will be denoted by
Ly. Given one additional pair to be interpolated, let Ly, denote an (almost)
square Lowner matrix constructed from all N + 1 pairs of points.

(a) If yn is unique, i.e. 2degynx<n, it interpolates the additional point if and
only if rank Ly, =rank Ly.

(b) Suppose that yx is nonunique, i.e. 2degyn=nN; let y\(0;x) be a para-
metrization of all minimal-degree rational functions interpolating the given N
points. The additional point is interpolated by ya(6y;x), for some value of the
vector parameter ¢ = @, if and only if rank Ly, =rank Ly+ 1. Otherwise, the
minimal degree of a rational function interpolating all N + 1 points is degyy+ 1.

Proof of 3.6. (a). This is a consequence of Main Lemma 2.5. (b) From the proof
of Thecrem 2.21 as well as Main Theorem 2.25(b), it follows that if yy is
nonunique and rank Ly, =rank Ly, then the minimal degree of a rational
function interpolating all ¥~ + 1 points is degyy+1. U

Proof of 3.4. (a) In the case of degree equality, if yy_,(x) is unique, we have
ya(o;x)=yp(x) =yn_i{x), i.e. @ is empty. If yy_,(®;x) is nonunique, by
Proposition 3.6(b), the ~nth point is interpolated by ya(o;x):=yn_,(%;x), by
appropriately restricting & to 7.

(b1) Let yn_, be unique. By Main Theorem 2.25, the minimal degree of the
rational functions interpolating all ~ points is ¥ minus the rank of the
corresponding (almost) square Lowner matrix, i.e. degyy=n~ — (degyn—_;+ 1),
which can be rewritten as

degyy +degyn_1=n~n—1.

This implies that degp =2 degyy— ~; since p is completely arbitrary, it has
2degyy — N+ 1 degrees of freedom, subject to restrictions (3.5b). Therefore
o=1, and

na{@; x) + ny_y(x)(x — x,)p(0; x)
dn(y; x) + dy_1(x)(x ~ x;)p(0; x)’

interpolates all ~ points. Furthermore, it has degp+1=2degyy—n~n+1,
parameters, which by Main Theorem 2.25(b), is the correct number of para-
meters in this case. Hence yn(a; x) provides the desired parametrization, while
numerator and denominator depend affinely on o.

(b2) Let y,._4(7; x) be nonunique. By Proposition 3.6(b), degyy =degyn_, +
1, and yy contains one more degree of freedom than y,_;. If we let

ymo;x) = (3.72)
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p(t;x)=1/7, where 7 is a nonzero parameter:

tnp{(G; x) + na—(m, x)(x — x;)

tdn(G; X) + dy_a(, x)(x ~ x}')’

provides the desired parametrization, with (3.5b) holding true. Notice again that

numerator and denominator depend affinely on ¢ =(x, 1), provided that
numerator and denominator of yy_,(7; x) depend affinely on 7. U

yno;x) =

We now turn our attention to the problem of minimally updating a minimal-
degree interpolating function, in order to take care of the additional point
(x;, yj), which is simple or multiple according to whether v;=0 or v;>0. To
obtain a minimal-degree interpolating function yy., using the linear fractional
representation (3.3), we choose M, yu, yn as follows:

(3.8) m is the largest positive integer less than ~, for which there exist
minimal-degree interpolating functions yy, y » satisfying yn(x) # y m(x).
The main result of this section is the following.

3.9 THEOREM Let yn(x) and yy(x) satisfy (3.8). Let also yn(g;x) be a
parametrization of all minimal-degree interpolating functions of the N points in Py.
Consider the (N + 1)th interpolation point (x;, y;,).

(@) If degywn+1=degyn, then yn.i(x) = yn(a; x) provides the desired minimal
updating.

(b) If degyn.,>degyn, the linear fractional representation (3.3) provides a
rational function of minimal degree interpolating all the N + 1 points, provided that
(i) s(x) is constant, if s(x;)#s(x;), for those x; satisfying v;=p;, and (i)
s(x) = a/(x + B), if s(x;) = s(x;) for some x; with v; = u;, where

1 da{x)

s(x))# — , for all x; satisfying: vi=u, fori=1,...,0, (3.10a
px) du(x) Tying: vi= i (3.102)
1 dn(x;) yo—ynx) . . .
s(x)= — . if x; is simple, i.e. v,=u, =0. 3.10b
D= " p00) du) o= yarlyyy 5 simple ke v =gy =0 (3100)
1 dal(x) y;, — DM -
s(x)= — s M) Vi yi;) if x; is multiple, i.e. v;=pu;=0.

Vil pi(x;) ds(x)) yju, — Dy ()’
(3.10c)

The function s(x) is also of minimal degree.

The theorem shows that the determination of yy.; is reduced to the
determination of a rational function s(x) of degree at most one; the value of s(x)
at x = x; is specified, while its value at points x =x; such that v, = yu;, has to be
different from further specified values.

Proof. (a) The procedure given in Theorem 3.4 is followed. In order to check
whether the degree of yy is equal to the degree of yy.;, we consider

[0 [y a(x)d(0; ¥) — nn(65 X)L, = 0, where [Dy(x)]—n = s
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(It should be remarked that this condition is easy to check only if the
parametrization is affine.) If this equation is not in conflict with one of the
relationships in (3.5b), we have equality of the two degrees; otherwise the degree
of y 41 increases.

(b) The rational function s(x) satisfying (3.10a,b,c) can have minimal degree
one or zero, according to whether s(x;) is equal to some s(x;) in (3.10a), or not.
This proves the minimality of s. Assuming that (3.10b,c) hold true, we will next
prove the minimality of deg yy.1.

(bl) Let yy be non-unique, i.e. 2degyy=n. In this case m=~—1. By
Proposition 3.6b degyy=degyy_;+ 1, and ya(x) interpolates one more point
than yy_,(x). Hence p(x) = x —x;, which implies deg yy = deg (yn_p). Again by
Proposition 3.6b, degyy,; =degyy+ 1. Therefore s(x) has to be of degree one
(otherwise degyy.;=degyy, which is a contradiction). Moreover, any s(x) of
degree one will result in a minimal-degree y ;-

(b2) Let yy be unique, i.e. 2degyy<n~. By assumption (3.8), yxy=y; for
i=m+1,...,~—1 (which implies that the latter interpolating functions are also
unique), while y,; is no longer unique; however, from (3.8) and Main Theorem
2.25 it follows that deg yy = deg y 5. By Main Theorem 2.25(b):

2degyn=2degyy=m.

Clearly, yy interpolates ¥ — s points more than y,, This implies that degp =
~ — M. Finally by (2.25b), the degree of yy.; is

N+1—(degyy+1)=N —degyny>degyn., =deg (pym).

In this case, if the minimal degree of s(x) turns out to be one, we have to choose
s(x) = a/(x + B), and not s(x) = ax + B, since the latter would cause the degree
of yy41 to be non-minimal (see Remark 3.13f). Of course, s(x), contrary to the
case (bl), might turn out to be a constant.

Minimality having been settled, there remains to show that expressions (3.10b)
and (3.10c) hold true. The first one follows readily from (3.3). In order to prove
(3.10c) we proceed as follows.

Solving (3.3) with respect to r:=ps, we obtain gr = r, where

g(x):=dp(X)(Ynr1(x) = yu(x)), r(x):=dn(x)(yn1(x) = yn(x)).
With D denoting derivation with respect to x, we have
K < K={ 1 i K’
D*q = 2 YD*'dp(D'yns1 — D'yy), where vy i=—1—.
i=0 (x =)l

If in the above expression the subscript m is replaced by ~, we obtain the xth
derivative of r. Taking m — 1:= v, successive derivatives of the equation gr = r we
obtain the system of equations

QOr=p (3.11)

where Q is an m X m lower triangular matrix with Q; =yi_1,j_1D‘_fQ for j =i,
and r and p are m X1 column vectors with D'"'r and D'"!r as ith entry,
respectively.
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Let us consider point x; and the resulting restrictions for r and its derivatives at

x = x;. By assumption:
Dl_l)’M(xj) = DI—IYN(xj) =y, (E=1L..., ),
D7lynx)=yjic1 (=w+2,---, %)

These relationships imply D 7'q(x;)=0 (i=1,...,u;), D%g(x;)#0, and
D>'r(x;)=0 (i=1,...,v,). The system (3.11) contains v; + 1 equations. The
first u; ones are of the form zero equals zero. The next v; — y; are of the form:
D*q(x,)D""'r(x;) =0 for i=1,..., v;— w; they imply Dr(x;)=0, for the same
indices i. These considerations prove that p is a polynomial having the form given
in (3.1a). If v, > y,, then r(x;) = 0. Thus the numerator and denominator of y, .,
in (3.3) cannot have x —x; as a common factor, and therefore, y,., interpolates
(%, Yim—1) form=1,..., v. If v, = y,, to prevent x — x; from being a common
factor, we require (3.10a) to hold.

The last equation in (3.11) turns out to be

Y Dq(x;)DY " Hr(x;) = DYir (x;).
Since, by (3.1a), we have r(x) = (x — x;)" " *p,(x)s(x), we obtain
DY Hr(x;) = (v; — 1)! pi(x;)s (x)),

which, together with (3.12), implies (3.10c).
This completes the proof of the theorem. [

D“'yM # yju.'

(3.12)

3.13 ReMarks. (a) If ¥+t new points are provided, with r>1, a f-step
updating of the interpolation function yy is obtained by performing ¢ successive
one-step updatings as shown in Theorem 3.9.

(b) If in Lemma (3.2), for some of the new points to be interpolated, we have

ya(x:) = ym(x:) # Yio,

then the function yg cannot interpolate at that point. This can be avoided by
appropriate choice of the various functions involved; compare e.g. Theorem 3.9,
where this situation cannot occur.

(c) From (3.10a—c) we conclude that the rational function s(x) does not
depend on y;;, except for i = u; and i = v;. The updating, therefore, depends on
the new values at the (& + 1)th and (~ + 1)th steps.

(d) If, in formula (3.3), s(x) is allowed to be an arbitrary rational function
satisfying (3.10a—c) (i.e. not necessarily of minimal degree as in Theorem 3.9),
then we obtain a parametrization of all rational functions interpolating the given
N + 1 points.

(e) The treatment in this section was inspired by the recursiveness approach as
applied to the problem of partial realizations. For details, see Antoulas (1985).

(f) In the proof of Theorem (3.9), it should be noticed that in case (b2) not all
s(x)'s of minimal degree satisfying (3.10b) give rise to y.,’s of minimal degree.
Only the indicated choice has that property. Thus to every minimal y,., there
corresponds a minimal s; the converse is not true.
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(g) One of the main advantages of the recursiveness considerations is that the
use of the Lowner matrix is circumvented. Consequently, one does not have to
compute the rank of matrices, whose size increases with the data.

(h) Recall (3.8). Clearly, yy interpolates any subset of the given ~ points. For
minimality of yy,; however, we have to choose y,, different from y,, but of
degree as close to the degree of yy as possible.

(i) A special case of the linear fractional representation formula (3.3) used for
recursive interpolation of distinct points can be found in Walsh (1935, Chapter
X). Minimality however is not obtained. [

An example will now illustrate the recursiveness aspects of the interpolation

problem.
3.14 ExampLE The procedure to follow will first be summarized. At the ~th
step we compute yn(o; x) and y so as to satisfy (3.8). If degyn, =degyn, we
restrict ¢ appropriately. If the degree increases however, we first use Theorem
3.9(b) to compute one (~+ 1)th minimal updating, and then Theorem 3.4 to
obtain a parametrization of all (¥ + 1)th minimal updatings. The last two steps
can be combined in one. We prefer not to do so however, because in this case the
numerator and the denominator will not depend affinely on the parameters;
additional work will be needed to achieve this.

The points (x;, y;) to be recursively interpolated are: (0, 0); (1, 0); (2, 1); (4, 2);
(3.0); (6, 3); (—1, —8); (0,0); (0, 0); the second and the third (0, 0) pairs are to
be interpreted as specifying the values of the first and of the second derivatives at
zero. At the first and the second steps: y,=y,=0. At the third step, a
parametrization of all minimal interpolating functions is obtained using Main
Theorem 2.25 and Theorem 2.26:

x(x —1)
(a+B+1)x*—Qa+38+1x+28

(e, Bix)=

where
a#0, B#0. (3.15)

For the fourth step, we notice that (4,2) is interpolated by the above
expression iff

4o +3B+3=0. (3.16)

Since (3.16) is not in contradiction with (3.15), we are in case (a) of Theorem 3.9.
Thus

3x(x—-1)
—ax®+6(a + Dx ~2(4a +3)’
a#*0, 4da+3+#0.

yaa; x) =

For the fifth step we notice that y,(«;x) cannot interpolate (3,0), for any
finite value of a. Thus, the degree increases. We apply Theorem 3.9(b) to obtain
ny(—1;x) +n3(—2, 1; x)(x — 4)s(x)
dy(—1;x) +d5(=2, 1;x)(x — s(x)

ys(x) = (3.17a)
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Conditions (3.10a,b) are as follows:

s(0) #34, s(1) #3, 5Q2) #3,5(3) =3. (3.17b)
The minimal-degree rational function satisfying (3.17b) is
s(x)=3. (3.17¢)
This implies that
3x(x — 1)(x —3)
= 3.17d
) = e -2 (3.17d)
Applying Theorem 3.4 we obtain a parametrization of all ys’s.
Brs(x) + ny(a; x)(x — 3)
a, B;x)=
¥ Bix) = g o)+ dy(ax)(x - 3)
+ - Dx -
3B+ Dx(x ~ 1)~ 3) (3.176)

T ax+ (9a + B+ 6)x + (—26a + 68 — 24)x + 6(4a + 3) — 228
Restrictions (3.5b) for the points 0, 1,2, 4, 3, respectively, turn out to be

2a—11B+9%0, 2a-58+#0, B+1#0, 58—36+0.
(3.17f)

B+1+0,

For the interpolation of (—1,—8) at the sixth we obtain from (3.17¢) the
relationship

4o —2B +3=0. (3.18a)

Since (3.18a) is not in contradiction with any of the relationships in (3.17f), we
conclude that the minimal degree does not increase. We apply Theorem 3.9a to
obtain

32a + x(x — 1)(x —3)

x)= . 3.18b
Y@ X) = o Tl + B)x — (14a + S)x — (200 + 15) (3.180)
Combining (3.18a) and (3.17f) the following restrictions are obtained

a#t -3 a* %, et} a%H (3.18¢)

Formula (3.18b) interpolates (6, 3) iff the parameter « has the value
a=—%. (3.19)
Since (3.19) is not in contradiction with (3.18c), for the second consecutive step,
the minimal degree remains. We have
Tx(x —1)(x—3)
X+ —12x -6

yA(x) =

this is the unique rational function of minimal degree interpolating the first seven
points of our list.
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Since the derivative of y; at zero is not zero, in order to interpolate the eighth
point, the degree of the interpolating function will have to increase. We apply
Theorem 3.9(b) to obtain

ny(x) + ng(0; x)(x — 6)s(x)
d;(x) + de(0; x)(x — 6)s(x)’
Conditions (3.10a,c) yield the following conditions on s(x).
s(O)#3%, s(1)# -1, sB)#1, s(2)#73, s(4)#3, s(—1)+1, and s(0) = 2.

This implies that the minimal degree of s(x) is zero: s(x) =%
One minimal-degree interpolating function for all eight points is therefore

() = Tx*(x — 1)(x —3)
Y T 3 4 — 2k + 48

Using Theorem 3.4 we also obtain a parametrization of all yg’s:

ys(x) =

ng(x) + axny(x)

;X)) = : 3.20
W) =5 0+ axds(x) (3.202)
Conditions (3.5b) yield the following restrictions for a:
a*l, a#i a#*-1 (3.20b)

In order for the second derivative of the function to vanish at zero we must
have in (3.20a) that a = —1. This is in contradiction with (3.20b). Hence the
degree increases again. y, can be expressed as follows:

ng(0; x) + no(x)xs(x)
dg(0; x) + dy(x)xs(x)

yolx) = (3.21a)

Conditions (3.10a,c) yield:
s(#1, sB)#3, s@)#-1, s@#*-1, s(-1)#-1, s(6)* -1, s(0)=-1.
(3.21b)

1t follows that s(x) has minimal degree one. In this case, like in (bl) of the proof
of Theorem 3.9, any minimal s(x) will do. We choose s(x) = x — 1. The resulting
minimal degree interpolating function is

7x*(x — D)(x — 3)
x°+x*— x>~ 38x + dx + 48

yo(x) = (3.21¢)

It is interesting to notice that in (3.21a) if we choose s(x) = —1, four of the
conditions (3.21b) are violated. This means that four pole—zero cancellations
occur in (3.21a). Since the function has degree four, no more pole-zero
cancellations can take place. The resulting function should be a constant and it
should interpolate all remaining five points. Actually, s(x) = 0, which interpolates
all but the four points at which the pole-zero cancellation occurred, namely
x =2, 4, —1, 6. This situation is as predicted by Corollary 2.19. Finally, by (2.1)
and (2.3a,b) the generalized Lowner matrix of the nine points, with row array
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§=(0,3,6, —1), and column array T=(0, 0, 1, 2, 4), is

0 o o 4 4
0 0o 0 -1 2
L= 1 1 3 1 1
72 12 5 2 2
-8 -8 4 3 2

The rank of this matrix is four, but the conditions of Corollary (2.19b) are not
satisfied. Thus by Main Theorem 2.25(b), the degree of the resulting minimal
interpolating functions is 9 —4 =35, which is the same as the degree of yo(x) in
(3.21¢).
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